Monte-Carlo Tree Search Solver

نویسندگان

  • Mark H. M. Winands
  • Yngvi Björnsson
  • Jahn-Takeshi Saito
چکیده

Recently, Monte-Carlo Tree Search (MCTS) has advanced the field of computer Go substantially. In this article we investigate the application of MCTS for the game Lines of Action (LOA). A new MCTS variant, called MCTS-Solver, has been designed to play narrow tactical lines better in sudden-death games such as LOA. The variant differs from the traditional MCTS in respect to backpropagation and selection strategy. It is able to prove the game-theoretical value of a position given sufficient time. Experiments show that a Monte-Carlo LOA program using MCTS-Solver defeats a program using MCTS by a winning score of 65%. Moreover, MCTS-Solver performs much better than a program using MCTS against several different versions of the world-class αβ program MIA. Thus, MCTS-Solver constitutes genuine progress in using simulation-based search approaches in sudden-death games, significantly improving upon MCTS-based programs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancements for Multi-Player Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is becoming increasingly popular for playing multi-player games. In this paper we propose two enhancements for MCTS in multi-player games: (1) Progressive History and (2) Multi-Player Monte-Carlo Tree Search Solver (MP-MCTS-Solver). We analyze the performance of these enhancements in two different multi-player games: Focus and Chinese Checkers. Based on the experi...

متن کامل

Score Bounded Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a successful algorithm used in many state of the art game engines. We propose to improve a MCTS solver when a game has more than two outcomes. It is for example the case in games that can end in draw positions. In this case it improves significantly a MCTS solver to take into account bounds on the possible scores of a node in order to select the nodes to explor...

متن کامل

Hybridizing Constraint Programming and Monte-Carlo Tree Search: Application to the Job Shop Problem

Constraint Programming (CP) solvers classically explore the solution space using tree search-based heuristics. Monte-Carlo Tree-Search (MCTS), a tree search-based method aimed at sequential decision making under uncertainty, simultaneously estimates the reward associated to the subtrees, and gradually biases the exploration toward the most promising subtrees. This paper examines the tight combi...

متن کامل

Search Policies in Multi - Player Games 1

In this article we investigate how three multi-player search policies, namely maxn, paranoid, and Best-Reply Search, can be embedded in the MCTS framework. The performance of these search policies is tested in four different deterministic multi-player games with perfect information by running self-play experiments. We show that MCTS with the maxn search policy overall performs best. Furthermore...

متن کامل

Monte-Carlo Hex

We present YOPT a program that plays Hex using Monte-Carlo tree search. We describe heuristics that improve simulations and tree search. We also address the combination of Monte-Carlo tree search with virtual connection search.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008